Harvard Rocket Propulsion Group

Expanding Harvard's engineering footprint

Developing rocket engineers of the future

Table of Contents:

- Documentation……………………………………………….………………….……………...49-50
- Funding and Suppliers…….………………….…………………………….…………………….51
- Diversity and Outreach………..……………………….………………….………………..52-55

Appendix

Overview

Objectives and Timeline

Why A Rocket Propulsion Project?

Core Beneficiaries of HRPG:

- 1. **Students** Provide student engineers with industry-relevant, hands-on mechanical, electrical, aerospace, materials and systems engineering experience and training
- 2. **University** Engineering programs across the country are defined not just by their competitive curriculums, but by the initiative and performance of their student engineering teams
- 3. **Industry** Establish relationships with a network of accomplished engineering and technology alumni, peer universities, and corporate partners

Why Liquid Propulsion?

Benefits of Liquid Propulsion:

- 1. **Surmountable:** Liquid rocket engines are difficult, but possible. Dozens of university rocketry teams in the last 5 years have begun tackling this challenge demonstrating the commitment and excellence of their engineers
- 2. **Scalable:** This project scales steadily over time in both difficulty and risk, allowing students to develop competence in smaller components of the project building up to the main objectives
- 3. **Applicable:** Revolutions in propulsion technology are paving the way to the Moon and Mars. Lessons learned in Harvard's labs will prepare students to enter this cutting edge industry out of college

Project Outline

Technical Objectives and Methodology

Phase 0 Timeline (2021-2022)

Summer 2021: Initial Research Phase

- Literature review
- Peer organization interviews
- Supplier/sponsor research

Fall-Spring 2022: Development Phase

- Team assembly and training
- Igniter + test stand design
- Part acquisition

Fall 2021: Outline Phase

- Initial test stand design
- Initial spark igniter design
- Harvard support and funding

May 2022: Testing Phase

- Spark igniter assembly
- lgniter hot fire
- Initial liquid engine development

Phase 1-2 Timeline (2022-2025)

Liquid Engine Development

Phase 0: Initial Propulsion Introduction to Rocket Engines

Igniter Design

 $\frac{1}{2}$, where $\frac{1}{2}$, where $\frac{1}{2}$

Considerations:

- $-$ Cost: < $$1500$ (Igniter + Stand)
- Fuel: Ethanol/Kerosene
- OX: GOX
- Thrust: 10-15 lbf

Goals:

- Develop a reusable spark igniter
- Atomize and mix liquid fuel
- Produce target thrust

Missouri S&T Rocket Design Team Spark Torch Igniter

Thruster Layout - Gas/Liquid Injection

Thruster Layout

Feed Stand Design

 $\mathcal{L}=\mathcal{L}^{\mathcal{L}}$, we have the set of $\mathcal{L}^{\mathcal{L}}$

Considerations:

- Cost: <\$1500 (Igniter + Stand)
- Fuel: Ethanol/Kerosene
- OX: GOX
- Thrust: 10-15 lbf

Goals:

- Feed a gas/liquid fuel mixture
- Achieve target mass flow rate

Feed Stand Layout - Gas/Liquid Fuel Mixture

Feed Stand Layout - Functionality

Feed Stand Layout - Safety

Phase 0: Big Questions

1. **Igniter or Low-Thrust Engine?**

- a. Consider mass flow rate
- b. Initial project scope, cost, and safety

Answer: Will go with an igniter for simpler scope and to ensure safety

2. **Phase 0: Gas/gas or gas/liquid igniter?**

- a. Definitely gaseous oxidizer
- b. Liquid would cost a little more (more parts, needs pressurant, etc)
	- i. Slightly larger scope (injection matters more)
	- ii. Better preparation for liquid bipropellant

Answer: Will likely go with a gas/liquid mixture of GOX/Kerosene or GOX/Ethanol

Phase 1: Liquid Propulsion Introduction to Liquid Propellant

Phase 1.1: Water Flow Test Stand Injector Test Campaign

Pintle Injector

 $\frac{1}{2}$, where $\frac{1}{2}$, where $\frac{1}{2}$

Considerations:

- Injection Type: Pintle
- Injector Material: TBD
- Mixture ratio
- Pressure losses

Goals:

- Ensure optimal fuel/ox mixture
- Reduce design complexity
- Minimize cost

Phase 1.2: Combustion Chamber Initial Design

Combustor Design

 $\mathcal{L}=\mathcal{L}^{\mathcal{L}}$, we have the set of $\mathcal{L}^{\mathcal{L}}$

Considerations:

- Cost: <\$3000
- Fuel: Kerosene/Ethanol
- Oxidizer: LOX/GOX/N₂O
- Thrust: 350-500
- Thrust: 350-500

Goals:

Develop a low thrust, pressure-fed, liquid bi-propellant rocket combustion chamber.

Heat Sink Variant

Ablative Variant

Engine 1 Variants: Heat Sink vs Ablative

Heat Sink Cooling

Considerations:

- Material: Stainless Steel/Copper

 $\frac{1}{2}$, where $\frac{1}{2}$, where $\frac{1}{2}$

- Chamber Geometry
- Chamber Wall Thickness

Goals:

Prevent structural damage to combustion chamber components and allow for multiple short-duration hot fires.

Engine Layout

Ablative Cooling

 $\frac{1}{2}$, where $\frac{1}{2}$, where $\frac{1}{2}$

Considerations:

- Material: Phenolic Resin (CE or LE grade resin)/Graphite
- Design: Metal casing + resin liner

Goals:

Safely ablate heated material preventing structural damage and enabling longer-duration hot fires.

Engine Layout

Phase 1.3: Advanced Feed Stand Liquid/Liquid Feed System

Feed Stand Design

 $\mathcal{L}=\mathcal{L}^{\mathcal{L}}$, we have the set of $\mathcal{L}^{\mathcal{L}}$

Considerations:

- Cost: <\$3000
- Fuel: Kerosene/Ethanol
- Oxidizer: LOX/N₂O
- Cryogenic rating?
- Thrust: 350-1000 lbf

Goals:

Develop a feed system rated for chosen fuel/oxidizer mixture and mass flow rates for target engine thrust.

MASA's Cryogenic Feed Stand at the University of Michigan

Phase 1: Big Questions

1. Heat sink or ablative cooling?

- a. Heat sink is simpler
- b. Heat sink limits hot fire burn time
- c. Ablative allows for longer burn time

2. LOX, GOX or Nitrous?

- a. LOX may be less volatile
- b. LOX must be stored at cryogenic temperatures and requires costly cryo-rated parts
- **3. Alcohol (isopropanol or ethanol) vs kerosene:**
	- a. Alcohol avoids coking
	- b. Alcohol can be diluted with water (increasing safety at cost of performance)
	- c. Kerosene can provide beneficial soot deposits in combustor but adds a variable
	- d. Slightly better performance from kerosene

Phase 2: Advanced Propulsion Advanced Cooling and Injection

Engine Design

 $\frac{1}{2}$, where $\frac{1}{2}$, where $\frac{1}{2}$

Considerations:

- Cost: <\$10,000
- Fuel: LCH₄/Kerosene/Ethanol
- Oxidizer: LOX/N₂O
- Thrust: 1000+ lbf

Goals:

Develop a 1000+ lbf pressure-fed, liquid bi-propellant rocket engine.

Engine Layout

Elements

Regenerative Cooling

 $\frac{1}{2}$, where $\frac{1}{2}$, where $\frac{1}{2}$

Considerations:

- Coolant Choice
- Channel Geometry
- Channel Count
- Chamber Wall Thickness
- Chamber Coolant-Film Lining

Goals:

Prevent structural damage to combustion chamber components and allow for reuse.

Numerical Analysis of Regenerative Cooling in Liquid Propellant Rocket Engines <https://doi.org/10.1016/j.ast.2011.11.006>

Injectors

Considerations:

- Injection Type: Coaxial Swirler

 $\frac{1}{2}$, where $\frac{1}{2}$, where $\frac{1}{2}$

- Element Count
- Assembly: Machined/Additive

Goals:

Ensure optimal fuel/oxidizer mixture.

Phase 2: Big Questions

1. Pintle or coaxial swirl injection?

- a. Coaxial swirlers more difficult to model mathematically
- b. Coaxial swirlers are simple to manufacture (individual elements)
- c. Pintle also relatively simple to manufacture
- 2. Fuel: LCH₄, kerosene, alcohol?
	- a. Kerosene has a coking issue that significantly hampers regen cooling
	- b. $\;\;$ LCH $_4$ can be hard to acquire
	- c. Ethanol can be diluted for safety at cost of performance
	- d. Likely depends on Engine 1 choice
- **3. Oxidizer: Nitrous, LOX?**
	- a. Depends on Engine 1 choice

Launch Vehicle Development

Competition Objectives

Considerations:

- Competition Guidelines

 $\mathcal{L}=\mathcal{L}^{\mathcal{L}}$, we have the set of $\mathcal{L}^{\mathcal{L}}$

- Submission Paper
- Altitude Category: 10/30k ft

Goals:

Submit, fly, and recover a liquid bipropellant rocket as a part of the **Spaceport America Cup** in 2025.

Rocket Design

 $\frac{1}{2}$, where $\frac{1}{2}$, where $\frac{1}{2}$

Considerations:

- **Cost**
- Target Altitude
- Engine Performance
- Guidance, Navigation, and Control
- Recovery

Goals:

Test a flight-configuration liquid bipropellant rocket engine while reaching a target altitude.

Rocket Layout

Rocketry: Big Questions

1. Rocketry in general or just propulsion?

- a. Rocket engine in flight config or no?
- b. Team stretched too thin with rocketry?
- c. Enough inspiration/recruiting with just propulsion?

Answer: Rocketry as the long term goal when a flight-config liquid engine has been built

2. Attitude Adjustment?

- a. Reaction wheels?
- b. Engine gimbal? (Probably not)
- c. Nothing? (Fins?)

3. Data Collection?

- a. Data important in hot fire vs flight?
	- i. Changing engine performance at different atmospheric pressures
- b. Altitude, thrust, chamber pressure, burn time...?

Administration and Logistics

Organization Chart

Leadership Board Responsibilities

Contacts

 $+$ \equiv

University Rocket Teams

Harvard Faculty v

Companies/Organizations v

Harvard Alumni v

Knowledge Documentation

 $\mathcal{L}=\mathcal{L}^{\mathcal{L}}$, we have the set of $\mathcal{L}^{\mathcal{L}}$

Year-In-Reviews:

A yearly summary of the project, it's accomplishments, goals, and questions, providing a narrative summary of the project across multiple years.

Project Wiki:

One-stop-shop repository of knowledge for onboarding and continued reference.

Team Website:

Digestible overview of the project and membership for members, sponsors, and the general public.

Knowledge Share: A Sample Year

Funding, Sponsors, and Suppliers

Funding:

- Nectar
- 2. UC Funding
- 3. Harvard Office of Sustainability

Potential Sponsors/Suppliers:

- 1. McMaster-Carr
- 2. Swagelok
- 3. Triton Space Technology
- 4. General Dynamics
- 5. BMP Machining Solutions
- 6. Graphitestore.com

Diversity and Outreach

Representation and Outreach

Boston Partnerships and Outreach

Joining the Collegiate Rocket Propulsion Community

Injection: Impinging Jet vs Pintle

Unlike Impinging Jet Injector Pintle Injector

Injector Plate

 $\frac{1}{2}$, where $\frac{1}{2}$, where $\frac{1}{2}$

Considerations:

- Injection Type: Unlike Impingement
- Injector Material: Brass
- Assembly: Machined/Additive
- Injection type: Unlike Impingement

Goals:

Ensure optimal fuel/oxidizer mixture while reducing manufacturing complexity.

Combustion Chamber Design

 $\mathcal{L}=\mathcal{L}^{\mathcal{L}}$, we have the set of $\mathcal{L}^{\mathcal{L}}$

Considerations:

- **Combustion Chamber Material**
- Chamber Geometry
- Fuel: LCH₄/Isopropyl Alc/Ethanol
- Oxidizer: $LOX/N₂O$
- Ignition: Augmented Spark
- Assembly: Machined/Additive

Goals:

Develop a ~1000 lbf pressure-fed, liquid bi-propellant rocket combustion chamber.

Engine Layout

